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Executive Summary 

In 2012, a Task Group was formed by the SFPE Standards Making Committee for Predicting the 
Thermal Performance of Fire Resistive Assemblies to develop a set of verification cases to be 
published in the SFPE Standard on the Development and Use of Methodologies for Predicting 
the Thermal Performance of Fire Resistive Assemblies. The Task Group compiled existing 
verification problems, made modifications to problem statements for consistency and 
completeness, developed new verification problems to address physics that were not captured in 
existing verification problems, and derived solutions to all cases, ensuring that the published 
solution was within an acceptable degree of accuracy.  

This report documents the work that was performed by the Task Group to determine the 
solutions to the verification cases that appear in the Annex of the Standard. All verification 
problems were evaluated by two calculation methods. For problems in which an analytical 
solution exists, the analytical solution was compared to a numerical solution to verify the 
accuracy of the solution. For problems in which no analytical solution exists, the cases were 
modeled by two different numerical methods and the results were compared to demonstrate that 
the two methods yield the same result within an acceptable tolerance. Modeling assumptions, 
convergence studies, and comparisons between calculation methods are documented in the 
report. Input files for numerical models have been archived and are available for download on 
the SFPE website at http://www.sfpe.org/.   
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1. Introduction 

The SFPE Standards Making Committee for Predicting the Thermal Performance of Fire 
Resistive Assemblies undertook the task of drafting a standard to regulate the development and 
use of methods for predicting the thermal performance of structural and fire resistive assemblies. 
The standard addresses the general requirements of the method of heat transfer analysis, the 
input data and boundary conditions in the model, the verification and validation procedure, and 
the application and documentation of the method.  

A chapter of the standard is dedicated to verification, which requires the user to verify the 
method of heat transfer analysis against a series of verification cases that appear in the annex of 
the standard. Verification is defined as “the process of determining the degree of accuracy of the 
solution of the governing equations.” The verification procedure involves modeling a series of 
problems with known solutions and demonstrating that the calculation method converges to the 
exact solution for each problem as the temporal and spatial resolution of the model is increased.  

The challenge to developing a set of standard verification cases is that most fire safety 
engineering applications involve complexities (e.g., nonlinear boundary conditions and material 
effects) that prohibit the formulation of a close-formed analytical solution. As a result, the 
solution to a problem can only be obtained numerically, and the accuracy of the solution can 
only be verified by comparison to another numerical solution. If two numerical methods are in 
agreement, it is never fully known whether the agreed-upon solution is the exact solution to the 
problem, although confidence in the accuracy of the solution improves as the solution is verified 
by additional calculation methods.  

In moving forward with the development of a standard verification scheme for fire safety 
engineering applications, a Task Group of the SFPE Standards committee was formed to compile 
existing verification problems, make modifications to problem statements for consistency and 
completeness, develop new verification problems to address physics that were not captured in 
existing verification problems, and derive solutions to all cases, ensuring that the published 
solution is reported within an acceptable degree of accuracy. This report documents the work 
that was performed to derive the published solutions that appear in the standard.  

1.1 Review of Existing Verification Cases 
Various classical texts on heat transfer analysis (e.g., Carslaw and Jaegar, 1969) have presented 
analytical and numerical solutions to a number of heat transfer problems. However, such texts 
may have limited applicability in fire safety engineering due to the simplicity of the problems 
that are presented. In particular, the boundary conditions and material effects may not capture a 
wide range of effects that are necessary in fire safety engineering, such as mixed convection and 
radiation from a surrounding gas whose temperature varies in time (e.g., the standard fire test) or 
latent heat due to moisture evaporation (e.g., as appears in heated concrete).  
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Due to the limitations of classical heat transfer problems, a number of verification problems have 
been proposed by various individuals from the fire safety engineering community. Wickström 
and Pålsson (1999) presented a suite of heat transfer problems that were used to verify the 
TASEF software. The problems have since been used in the verification of other software 
packages, including SAFIR (Pintea and Franssen, 1997) and HEATING (Trelles et al., 2003). 
The cases published by Wickström and Pålsson involve 1D and 2D heating in homogenous and 
composite sections with various material effects, including temperature-dependent conductivity 
and latent heat due to moisture evaporation. Some of the cases also involve radiation and 
convection across voids. A few verification cases appear in the Annex to the German Eurocode 
Standard DIN EN 1991-1-1-2 (2010). The cases involve 1D and 2D heating in homogeneous and 
composite sections and involve constant and temperature-dependent material effects. Additional 
verification cases can be found in the literature. For example, Jeffers and Sotelino (2009) and 
Jeffers (2013) presented various 1D, 2D, and 3D problems that were used to verify a finite 
element formulation for the case of non-uniform heating.  

From the review of heat transfer verification cases, it can be concluded that existing cases come 
from a variety of sources (i.e., reports, standards, and journal papers) that are not always readily 
accessible to a practicing engineer. Some of the published cases are incomplete, as pertinent 
details are missing or the cases do not capture all of the necessary physics. Furthermore, because 
the cases were developed by various authors, there are some inconsistencies in modeling 
assumptions and the published solutions are reported with varying degrees of accuracy.  

Therefore, after compiling the existing verification cases, the Task Group selected the most 
appropriate verification cases to be included in the standard and developed new verification 
cases to address physics that were not captured in the existing verification cases. Problem 
statements were modified from original sources in many instances for completeness and 
consistency in the modeling assumptions. A comprehensive analysis was performed to derive the 
solutions to all of the problems and to ensure that the published solution was reported to an 
acceptable degree of accuracy. A summary of the selected verification cases is given in Section 
1.2, and an overview of the procedure that was used to derive solutions to the verification cases 
is given in Section 1.3.  

1.2 Summary of Verification Cases in the Standard 
A total of sixteen verification cases were proposed for inclusion in the Annex of the SFPE 
Standard on the Development and Use of Methodologies to Predict the Thermal Performance of 
Structural and Fire Resistive Assemblies. As shown in Table 1, the verification cases involve a 
range of boundary conditions, material effects, and geometric effects to capture the most 
common behaviors that are encountered when modeling the thermal response of structural and 
fire resistive assemblies. In particular, the verification cases include lumped mass, 1D, 2D, and 
3D heat transfer in homogenous and non-homogenous solids. Rectangular and axisymmetric 
coordinates are used in the 1D and 2D cases. The problems include temperature-dependent 
material effects, latent heat due to moisture evaporation, and heat transfer in voids.  
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Table 1. Verification Cases 

Case Description 
1 Lumped mass subjected to standard fire 
2 Lumped mass subjected to incident flux 
3 1D heat transfer with cooling by convective  
4 1D axisymmetric heat transfer by convection 
5 2D axisymmetric heat transfer by convection and radiation 
6 2D heat transfer with cooling by convection 
7 2D heat transfer by convection and radiation 
8 2D heat transfer with temperature-dependent conductivity 
9 2D heat transfer in a composite section with temperature-

dependent conductivity 
10 2D axisymmetric heat transfer with non-uniform heat flux 
11 Lumped mass with moisture evaporation 
12 1D heat transfer with moisture evaporation 
13 2D heat transfer with moisture evaporation 
14 2D heat transfer in a composite section with moisture 

evaporation and temperature-dependent conductivity 
15 2D heat transfer in a composite section with cavity 

radiation 
16 3D heat transfer with non-uniform heat flux  

 

1.3 Solution Methodology 
Most of the verification cases do not have close-formed analytical solutions due to various 
complexities, including nonlinear boundary conditions and temperature-dependent material 
effects. Therefore, the solutions to almost all of the cases had to be obtained numerically. In 
summary, the following rules were applied to determine the published solutions: 

 If an analytical solution exists, the published solution was calculated directly from the 
analytical solution and verified by finite element analysis. 

 If an analytical solution does not exist, the case was modeled by at least two different 
numerical methods. The results from the numerical analyses were compared. If the 
methods yielded results that were within a specified tolerance, the numerical solution was 
deemed acceptable for publication in the Standard.  

Numerical methods that were used to solve the verification problems included finite difference 
(for the lumped mass problems) and finite element methods. For the finite difference 
calculations, the governing equations are given in this report. The finite element analyses were 
conducted in Abaqus, v. 6.11 (2011) and TASEF (Sterner and Wickström, 1990). Abaqus and 
TASEF have a number of fundamental differences in their algorithms and formulations. Most 
importantly, Abaqus uses an implicit solver for transient thermal problems whereas TASEF uses 
an explicit solver. The implicit solver in Abaqus is unconditionally stable but requires iterations 
for convergence for nonlinear problems. The explicit solver in TASEF requires a relatively small 
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time increment for stability but is able to solve the governing equations directly without iteration. 
Abaqus and TASEF also differ in the inclusion of latent heat effects as well as the manner in 
which cavity radiation is specified. The differences in the solving techniques between the two 
programs and the similarities of the calculated temperatures help to build confidence in the 
solutions that were obtained numerically.   
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2. Governing Equations 

The governing equations for the verification problems are given as follows. Additional details 
can be found in Carslaw and Jaeger (1969), Lattimer (2008), and Wickström (2008). 

Heat conduction within an isotropic solid is governed by the following equation (the 
nomenclature is provided in (Table 2): 

 
ܿߩ
∂ܶ
ݐ∂

ൌ
߲
ݔ߲

൬݇
߲ܶ
ݔ߲
൰ 

߲
ݕ߲

൬݇
߲ܶ
ݕ߲
൰ 
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ݖ߲
൬݇
߲ܶ
ݖ߲
൰ (1)

In cylindrical coordinates where the temperature varies in the radial coordinate only, Eq. (1) can 
be written:  

 
ܿߩ
∂ܶ
ݐ∂

ൌ
߲
ݎ߲
൬ݎ ݇

߲ܶ
ݎ߲
൰ (2)

The boundary condition in both Cartesian and cylindrical coordinate systems is typically 
expressed:  

 
െ݇

∂ܶ
∂݊

ൌ ሶݍ ᇱᇱ (3)

where ݊ denotes the normal direction pointing into the solid and ݍሶ ᇱᇱ is the net heat flux onto the 
solid surface.  

For the problems to follow, the heat flux, ݍሶ ᇱᇱ, is expressed in one of two ways. For cases where 
the solid object is completely surrounded by an optically thick gas whose temperature varies only 
as a function of time, fܶሺݐሻ, the heat flux is given by: 

	 ሶݍ ᇱᇱ ൌ ൫ߪߝ തܶf
ସ െ തܶsସ൯  ݄ሺ fܶ െ sܶሻ (4)

where fܶ and തܶf are the gas temperature in °C and K, respectively, and sܶ and തܶs are the 
calculated surface temperature in °C and K, respectively. For example, the standard ISO 834 fire 
is given by the following time-temperature curve: 

 
fܶሺݐሻ ൌ 20  345 log ቀ

଼௧


 1ቁ  (5)

 

where Tf is in °C, and t is the time in seconds. For the radiant heater case where the incident 
radiation is specified, the boundary condition should be expressed in the form of the incident 

radiative heat flux ݍሶ୧୬ୡ
"   by  

	 ሶݍ ᇱᇱ ൌ ሶݍሺߝ
ᇱᇱ െ ߪ തܶsସሻ  ݄൫ gܶ െ sܶ൯ (6)



6 
 

 
Note that തܶ௦ is absolute temperature of the surface in Kelvin, K.  The convective heat transfer 
coefficient, h, is used to describe convective heat transfer to the sample surface as proportional to 
the temperature difference between the gas temperature and the surface temperature. 

Alternatively Eq. 6 may be written as 

	 ሶݍ ᇱᇱ ൌ ሺߪߝ തܶrସ െ തܶsସሻ  ݄൫ gܶ െ sܶ൯ (7)

where the black body radiation temperature is defined as തܶ ൌ ටሶ
ᇲᇲ

ఙ

ర
. 

 

 

Table 2. Nomenclature. 

Symbol Quantity Units 
surface area to volume ratio ܸ/ܣ 1/m 
ܿ specific heat J/(kg·K) 
݄ heat transfer coefficient W/(m2·K) 
݇ thermal conductivity W/(m·K) 
ሶݍ ᇱᇱ heat flux W/m2 or kW/m2 
 radial coordinate m ݎ
ܶ temperature °C 
തܶ temperature K 
 time s ݐ

ሺݔ, ,ݕ  ሻ Cartesian coordinates mݖ
Stefan-Boltzmann constant 5.67 ߪ ൈ 10ି଼ W/(m2·K4) 
density kg/m3 ߩ

 emissivity dimensionless ߝ
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3. Published Solutions to the Verification Cases 

3.1 Case 1 – Lumped Mass Subjected to Standard Fire 

3.1.1. Problem Statement 

A plate ሺߩ ൌ 7850	kg/mଷ, ܿ ൌ 520	J/ሺkg∙Kሻ,	ε ൌ 0.7ሻ that has a thickness of 4 cm and an initial 
temperature of 20 °C is heated on the top and bottom surfaces according to the standard ISO 834 
fire curve, Eq. (5). As the thermal conductivity of the material is relatively large, the temperature 
in the section, ܶ, can be taken as uniform. For the convection heat transfer coefficient ݄ ൌ
25	W/ሺmଶ ∙ Kሻ, calculate the temperature of the plate as a function of time and compare to the 
values given in Table 3. 

 

Table 3. Reference Values 

Time (s) Temperature (°C)
0 20. 

300 97.8 

600 234.4 
900 390.2 
1200 539.7 

1500 662.9 
1800 751.9 

 

3.1.2. Modeling Approach 

A finite difference model was developed and verified by a finite element analyses conducted in 
Abaqus and TASEF. 

For the finite difference model, the radiation term was linearized in terms of an effective heat 
transfer coefficient hr, which is given according to: 

 ݄ ൌ ሺܶߪߝ  ܶሻሺܶଶ  ܶ
ଶሻ (8)

 

Combining Eqs. (1), (5), and (8) and using a finite difference approximation for the temperature 
gradient dT/dt gives the temperature at step i as: 

 
ܶ ൌ ܶିଵ  ൬

2
ܿߩ݀

൰ ሺ݄  ݄,ିଵሻሺ ܶ െ ܶିଵሻ∆(9) ݐ
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where d is thickness of the specimen. The temperature in Table 3 was calculated by Eq. (9), with 
the time step ∆ݐ  reduced until the solution converged to within 0.1 °C. The finite difference 
model converged at a time step of 0.25 s. The 2-norm error is plotted as a function of time step, 
and it can be seen that the lumped mass finite difference model exhibits first-order accuracy (i.e., 
O(∆ݐ)) in time.  

 

Figure 1. Order of Accuracy of the Finite Difference, Abaqus, and TASEF Models 

Because Abaqus does not have a lumped mass model, a 2D finite element model was generated 
with linear heat transfer elements and uniform temperature was imposed throughout the model 
using a tie constraint. A lumped mass model was also generated in TASEF. Convergence studies 
were performed, and it was determined that a time step of 0.5 s resulted in a solution that 
converged with 0.1 °C accuracy in the Abaqus model and 1 °C in the TASEF model. The 2-norm 
errors for the Abaqus and TASEF models are plotted in Figure 1, and it can be seen that Abaqus 
and TASEF exhibit first-order accuracy in time. The calculated error is slightly larger for the 
TASEF model because the temperature output from TASEF is only reported with 1 °C precision.  

3.1.3 Comparison of Results  

In Table 4, the temperatures calculated by the finite difference model (i.e., Eq. (9)) are compared 
to the temperatures calculated by Abaqus and TASEF. The temperature difference between the 
Abaqus model and the finite difference model is within 0.1 °C, as shown in Table 4. The TASEF 
solution is within 1 °C of the finite difference and Abaqus solutions. 
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Table 4. Comparison between the Finite Difference, Abaqus, and TASEF Models 

Time (s) 
Calculated Temperature (°C) Difference between the Abaqus 

and Finite Difference Models (°C) Finite Difference Abaqus TASEF 
0 20.0 20.0 20 0.0 

300 97.8 97.7 98 -0.1 
600 234.4 234.4 235 0.0 
900 390.2 390.1 390 -0.1 

1200 539.7 539.6 540 -0.1 
1500 662.9 662.8 663 -0.1 
1800 751.9 751.8 752 -0.1 



10 
 

3.2 Case 2 – Lumped Mass Subjected to Incident Flux 

3.2.1 Problem Statement 

A 1 cm thick horizontal flat plate ሺߩ ൌ 7850	kg/mଷ, ܿ ൌ 560	J/ሺkg∙Kሻ,	ε ൌ 0.9ሻ with an initial 

temperature of 20 °C is exposed from above with a radiant heater set to an incident flux of ݍሶ୧୬ୡ
"  = 

50 kW/m2. The net heat flux to the top surface of the plate is given by Eq. (6). The gas 
temperature is 20 °C and ݄ ൌ 12	W/ሺmଶ ∙ Kሻ. Assuming that the bottom and sides of the plate 
are perfectly insulated, and that the thermal conductivity of the material is sufficiently large to 
assume a uniform temperature with depth, calculate the temperature of the plate as a function of 
time and compare to the values given in Table 5. 

Table 5. Reference Values 

Time (s) Temperature (°C)
0 20.0 

180 195.0 
360 347.3 
540 466.2 
720 547.5 
900 596.6 

 

3.2.2. Modeling Approach 

A finite difference model was developed from Eqs. (1) and (6) and verified by finite element 
analyses conducted in Abaqus and TASEF. 

For the finite difference model, the governing equation based on Eqs. (1) and (6) is: 

 
ܿߩ
dܶ
dݐ

ൌ ቀ݄൫ gܶ െ ܶ൯  ሶ୧୬ୡݍ൫ߝ
" െ ସ൯ቁܶߪ (10) ܸ/ܣ

 

Using a finite difference approximation for the gradient dT/dt gives the temperature at step i as: 

 
ܶ ൌ ܶିଵ 

1
ܿߩ݀

ൣ൫ ܶ െ ܶିଵ൯  ሶ୧୬ୡݍ൫ߝ
" െ ܶିଵ

ସ ൯൧∆(11) ݐ

 

where d is thickness of the specimen. The temperature in Table 5 was calculated by Eq. (11), 
with the time step ∆ݐ  reduced until the solution converged to within 1 °C. The solution 
converged at a time step of 5 s. As illustrated in Figure 2, the lumped mass model exhibits first-
order accuracy (i.e., O(h)) in time. 
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Figure 2. Order of Accuracy for the Finite Difference, Abaqus, and TASEF Models 

Because Abaqus does not have a lumped mass model, a 2D finite element model was generated 
with linear heat transfer elements and uniform temperature was imposed throughout the model 
using a tie constraint. A lumped mass model was also generated in TASEF. Convergence studies 
were performed, and it was determined that a time step of 1 s resulted in a solution that 
converged within 0.5 °C accuracy for the Abaqus model and 1 °C for the TASEF model. The 2-
norm errors for the Abaqus and TASEF models are plotted in Figure 2, and it can be seen that 
Abaqus and TASEF exhibit first-order accuracy in time. The calculated error is slightly larger for 
the TASEF model because the temperature output from TASEF is only reported with 1 °C 
precision. 

3.2.3 Comparison of Results  

In Table 6, the temperatures calculated by the finite difference model (i.e., Eq. (11)) are 
compared to temperatures calculated by Abaqus and TASEF. It can be seen that the temperature 
difference between the Abaqus model and the lumped mass model is within 0.1 °C. The TASEF 
solution is within 1 °C of the finite difference and Abaqus solutions. 

Table 6. Comparison between the Finite Difference, Abaqus, and TASEF Models 

Time (s) 
Calculated Temperature (°C) Difference between the Abaqus 

and Finite Difference Models (°C) Finite Difference Abaqus TASEF 
0 20.0 20.0 20 0.0 

180 195.0 194.9 195 -0.1 
360 347.3 347.3 348 0.0 
540 466.2 466.2 467 0.0 
720 547.5 547.4 548 -0.1 
900 596.6 596.5 597 -0.1 



12 
 

3.3 Case 3 – 1D Heat Transfer with Cooling by Convection 

3.3.1 Problem Statement 

A 1 m thick slab of material (݇ ൌ 1	W/ሺm∙Kሻ, ߩ ൌ 1000	kg/mଷ, ܿ ൌ 1	J/ሺkg∙Kሻ, ε ൌ 0) with an 
initial temperature of 1000 °C is cooled via convection only. The surrounding air temperature is 
0 °C and ݄ ൌ 1	W/ሺmଶ∙Kሻ. Assuming that the back and sides of the slab are perfectly insulated, 
calculate the temperature of the back side of the slab as a function of time and compare to the 
values given in Table 7. 

Table 7. Reference Values 

Time (s) Temperature (°C)
0 1000.0 
60 999.3 

300 891.8 
600 717.7 
900 574.9 

1200 460.4 
1500 368.7 
1800 295.3 

 

3.3.2. Modeling Approach 

Case 3 was originally published in the Annex of the German standard DIN EN 1991-1-1-2/NA. 
The reference values given in Table 7 were published in the German standard and verified using 
Abaqus. A 2D heat transfer model was generated in Abaqus with linear heat transfer elements for 
a 1m-wide segment of the insulation material. The sides of the 1m by 1m segment of insulation 
material were insulated to produce a 1D temperature gradient across the thickness of the slab.  

The mesh density and time step in the Abaqus model were reduced until the solution converged. 

The time step t was selected for a given element size x by setting the Fourier number equal to 
one, i.e., 

 
ݐ∆ ൌ

ଶݔ∆

ߙ
 (12)

 

where is the thermal diffusivity. The results from the mesh sensitivity study are shown in 
Figure 3. It can be seen that the Abaqus solution converges with second-order accuracy (i.e., 

O(x2)) due to the simultaneous reduction in spatial and temporal meshes. It was found that the 
solution converged within 0.1 °C for an element size of 0.01 m and a time step of 0.1 s.  
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Figure 3. Order of Accuracy for the Abaqus Model 

 

3.3.3 Comparison of Results  

The solution published in the Annex of the German standard was compared to the results 
computed in Abaqus and TASEF. From the results in Table 8, it can be seen that the Abaqus 
solution matches to solution published in the German standard. The TASEF model also confirms 
the solution. 

Table 8. Comparison between the Abaqus and TASEF models and the published solution 

Time (s) 
Temperature (°C) Difference between Abaqus and 

the Published Solution (°C) Published Solution Abaqus TASEF 
0 1000 1000.0 1000.0 0.0 

60 999.3 999.3 999 0.0 
300 891.8 891.8 892 0.0 
600 717.7 717.7 718 0.0 
900 574.9 574.9 575 0.0 

1200 460.4 460.4 461 0.0 
1500 368.7 368.7 369 0.0 
1800 295.3 295.3 296 0.0 
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3.4 Case 4 – 1D Axisymmetric Heat Transfer by Convection 

3.4.1 Problem Statement 

A metal pipe of circular cross section (݇ ൌ 50	W/ሺm∙Kሻ, ߩ ൌ 5000	kg/mଷ, ܿ ൌ 500	J/ሺkg∙Kሻ, 
ε ൌ 0) is coated with an insulation material (݇ ൌ 0.05	W/ሺm∙Kሻ, ߩ ൌ 500	kg/mଷ, ܿ ൌ
1000	J/ሺkg∙Kሻ, ε ൌ 0). The insulation layer is contained within a 1 mm thick metallic cover with 
the same properties as the pipe. The inner and outer radii of the pipe are 25 mm and 30 mm, and 
the inner and outer radii of the insulation layer are 30 mm and 80 mm. The surrounding air 
temperature is 0 °C, and the temperature of the fluid flowing through the pipe is 1000 °C. The 
inner and outer heat transfer coefficients are 100 W/(m2·K) and 10 W/(m2·K), respectively. 
Calculate the steady-state temperature at various depths and compare with the values given in 
Table 9. 

Table 9. Reference Values 

Radius (mm) Temperature (°C)
25 981.2 
30 981.0 
40 710.3 
50 500.3 
60 328.8 
70 183.7 
80 58.1 
81 58.1 

3.4.2 Modeling Approach 

The analytical solution was derived for 1D steady state conduction through an axisymmetric pipe 
with convective boundary conditions at the inner and outer surfaces of the pipe. The thermal 
resistances Rhi and Rho for convection between the fluid and the inner and outer surfaces of the 
pipe, respectively, are given by: 

 ܴ ൌ
ଵ

ଶగ
,         ܴ ൌ

ଵ

ଶగ
, (13)

 

where ri and ro are the inner and outer radii of the pipe, respectively, and hi and ho are the inner 
and outer heat transfer coefficients, respectively. The thermal resistance Rk,j for conduction 
through a layer j with inner and outer radii ri,j and ro,j is given by: 

 

ܴ, ൌ
୪୬	ቆ

ೝ,ೕ
ೝ,ೕ

ቇ

ଶగೕ
, (14)
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where kj is the conductivity of layer j. The total thermal resistance of the pipe is found by 
summing the inner and outer convection resistances in Eq. (13) and the conduction resistances in 
Eq. (14) for each of the layers of the pipe.  

The analytical solution was verified by a finite element analysis in Abaqus and TASEF. In 
particular, a 2D axisymmetric model was generated in Abaqus with linear heat transfer elements 
for a 1cm section of pipe. A steady state heat transfer analysis was conducted to determine the 
steady state temperatures in the pipe. A mesh sensitivity study was performed, and it was 
determined that a mesh density of 0.1cm produced temperatures that were converged to within 
0.1 °C. An axisymmetric model was also generated in TASEF using an element size of 0.001 m 
to verify the analytical and Abaqus solutions. 

3.4.3 Comparison of Results 

In Table 10, the results from the Abaqus and TASEF analyses are compared to the analytical 
solution. It can be seen that the temperature difference between the Abaqus model and the 
analytical solution is less than 0.1 °C. The TASEF solution is within 1 °C of the analytical and 
Abaqus solutions.  

Table 10. Comparison between the analytical solution and the results from Abaqus and 
TASEF 

Radius 
mm 

Temperature (°C) Difference between Abaqus and 
the Analytical Solution (°C) Analytical Solution Abaqus TASEF 

25 981.2 981.2 981 0.0 
30 981.0 981.0 981 0.0 
40 710.3 710.3 710 0.0 
50 500.3 500.4 500 0.1 
60 328.8 328.8 329 0.0 
70 183.7 183.7 184 0.0 
80 58.1 58.1 58 0.0 
81 58.1 58.1 58 0.0 
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3.5 Case 5 – 2D Axisymmetric Heat Transfer by Convection and Radiation 

3.5.1 Problem Statement 

A metal pipe of circular cross section (݇ ൌ 50	W/ሺm∙Kሻ, ߩ ൌ 7850	kg/m, ܿ ൌ 500	J/ሺkg∙Kሻ, 
ε ൌ 0.8 penetrates a 0.2 m thick solid wall (݇ ൌ 1.5	W/ሺm∙Kሻ, ߩ ൌ 2400	kg/m, ܿ ൌ
1000	J/ሺkg∙Kሻ, ε ൌ 0.8), as shown in Figure 4. The inner and outer radii of the pipe are 95 mm 
and 100 mm. The pipe is 2.2 m in length and extends 1 m on each side of the wall. The initial 
temperature is 20 °C. The inner surface of the pipe is perfectly insulated. The outer surfaces of 
the pipe and wall are subjected to convection and radiation according to Eq. (4). On one side of 
the wall, the temperature is 20 °C and the heat transfer coefficient is 4 W/(m2·K). On the other 
side of the wall, the temperature is given by the ISO 834 time-temperature curve, Eq. (5), and the 
heat transfer coefficient is 25 W/(m2·K). Calculate the temperature at the intersection between 
the pipe and wall on the unheated surface (as shown in Figure 4) and compare with the values 
given in Table 11. 

 

 

Figure 4 

 

Table 11. Reference Values 

Time (h) Temperature (°C)
0 20 

0.5 49 
1.0 107 
1.5 158 
2.0 201 
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3.5.2 Modeling Approach 

Case 5 was modeled in Abaqus using linear axisymmetric heat transfer elements. The solution 
was verified by finite element analysis in TASEF. 

A fine mesh with element sizes of 0.0025 m was used in Abaqus, and the time step was 
systematically reduced until the solution converged. From the convergence study, the solution 
was found to converge within 0.3 °C for a time step of 15 s.  

3.5.3. Comparison of Results 

A comparison between the Abaqus and TASEF solutions is shown in Table 12. It can be seen 
that the temperature difference between the Abaqus and TASEF models are within 2 °C.  

Table 12. Comparison between Abaqus and TASEF 

 Temperature (°C) Temperature Difference between 
Abaqus and TASEF (°C) Time (h) Abaqus  TASEF 

0 20 20 0 
0.5 49 47 -2 
1.0 107 107 0 
1.5 158 159 1 
2.0 201 201 0 

 

  



18 
 

3.6 Case 6 – 2D Heat Transfer with Cooling by Convection 

3.6.1 Problem Statement 

A 2 m by 2 m square column (݇ ൌ 1	W/ሺm∙Kሻ, ߩ ൌ 1	kg/mଷ, ܿ ൌ 1	J/ሺkg∙Kሻ, ε ൌ 0) with an 
initial temperature of 1000 °C cools via convection only. Assuming that ݄ ൌ 1	W/ሺmଶ∙Kሻ and 
the surrounding air temperature is 0 °C, calculate the temperature at the center of the column as a 
function of time and compare to the values given in Table 13. 

Table 13. Reference Values 

Time (s) Temperature (°C)
0.0 1000. 
0.1 986.4 
0.2 903.8 
0.4 690.2 
0.6 514.7 
0.8 382.7 
1 284.5 

3.6.2 Modeling Approach 

The analytical solution for this case was originally published by Wickström and Pålsson (1999). 
Wickström and Pålsson also provided a numerical solution from the software TASEF. Details 
about the analysis can be found in the referenced report. A convergence study was performed in 
TASEF, and it was found that a mesh of 256 elements provided accuracy to within 1 °C. 
 

3.6.3 Comparison of Results 

The comparison between TASEF and the analytical solution is reproduced in Table 2. It can be 
seen that the temperature difference between the analytical and numerical solution is less than 1 
°C, which is acceptable given the accuracy the numerical solution from TASEF. 

Table 14. Comparison between the Analytical Solution and TASEF 

Time 
(s) 

Temperature (°C) Difference between TASEF and the 
Analytical Solution (°C) Analytical Solution  TASEF 

0.0 1000. 1000 0 
0.1 986.4 986 0 
0.2 903.8 904 0 
0.4 690.2 691 1 
0.6 514.7 515 0 
0.8 382.7 384 1 
1 284.5 285 0 
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3.7 Case 7 – 2D Heat Transfer by Convection and Radiation 

3.7.1 Problem Statement 

A 0.2 m by 0.2 m square column (݇ ൌ 1	W/ሺm∙Kሻ, ߩ ൌ 2400	kg/mଷ, ܿ ൌ 1000	J/ሺkg∙Kሻ, 
ε ൌ 0.8) is heated according to the ISO 834 time-temperature curve, Eq. (5). Assuming that 
݄ ൌ 10	W/ሺmଶ∙Kሻ and that the initial temperature ஶܶ is 0 °C, calculate the temperature at the 
column center, corner and middle side surface as a function of time and compare to the values 
given in Table 15. 

Table 15. Reference Values 

Time (min)
Temperature (°C) 

Center Side Corner
0 0 0 0 
30 9 721 809 
60 127 873 921 
90 315 952 984 

120 492 1005 1028 
150 640 1045 1062 
180 757 1077 1089 

3.7.2 Modeling Approach 

Case 7 was originally published by Wickström and Pålsson (1999). The solution published by 
Wickström and Pålsson was based on a TASEF model that had converged with 2 °C accuracy. 
The solution was verified by Abaqus using a 2D finite element model with linear heat transfer 
elements. The mesh density and time step in the Abaqus model were reduced until the solution 

converged. The time step t was selected for a given element size x by Eq. (12). Figure 5 

illustrates that the model exhibits second-order accuracy (i.e., O(x2)). From the convergence 
study, the Abaqus model was found to converge within 1°C for a mesh density of 0.001 m and 
time step of 2.4 s. 

3.7.3 Comparison of Results 

The results from TASEF and Abaqus are compared in Table 16. It can be seen that the calculated 
temperatures are within 2 °C.  
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Figure 5. Order of Accuracy of Abaqus Model 

 

Table 16. Comparison between TASEF and Abaqus 

Time 
(min) 

Temperature (°C) Temperature Difference 
between TASEF and 

Abaqus (°C) 
Abaqus  TASEF 

Center Side Corner Center Side Corner Center Side Corner 
0 0 0 0 0 0 0 0 0 0 

30 9 721 809 10 723 811 1 2 2 
60 127 873 921 128 873 922 1 0 1 
90 315 952 984 315 952 984 0 0 0 

120 492 1005 1028 492 1006 1028 0 1 0 
150 640 1045 1062 639 1046 1062 -1 1 0 
180 757 1077 1089 756 1077 1089 -1 0 0 
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3.8 Case 8 – 2D Heat Transfer with Temperature-Dependent Conductivity 

3.8.1 Problem Statement 

A 0.2 m by 0.2 m square column (ߩ ൌ 2400	kg/mଷ, ܿ ൌ 1000	J/ሺkg∙Kሻ, ε ൌ 0.8) is heated 
according to the ISO 834 time-temperature curve, Eq. (5). The thermal conductivity of the 
column material varies linearly with temperature such that its value is 1.5 W/(m·K) at 0 °C, 
0.7 W/(m·K) at 200 °C, and 0.5 W/(m·K) at 1000 °C. Assuming that ݄ ൌ 10	W/ሺmଶ∙Kሻ and that 
the initial air temperature is 0 °C, calculate the temperature at the column center, corner and 
middle side surface as a function of time and compare to the values given in Table 17. 

Table 17. Reference Values 

Time (min)
Temperature (°C) 

Center Side Corner
0 0 0 0 
30 18 743 815 
60 99 884 923 
90 190 958 985 

120 300 1008 1028 
150 411 1046 1062 
180 512 1077 1089 

3.8.2 Modeling Approach 

Case 8 was originally published by Wickström and Pålsson (1999). The solution published by 
Wickström and Pålsson was based on a TASEF model that had converged with 1 °C accuracy. 
The solution was verified by Abaqus using a 2D finite element model with linear heat transfer 
elements. The mesh density and time step in the Abaqus model were reduced until the solution 

converged. The time step t was selected for a given element size x by Eq. (12). From the 
convergence study, the Abaqus model was found to converge within 1°C for a mesh density of 
0.001 m and time step of 2.4 s. 

3.8.3 Comparison of Results 

The results from TASEF and Abaqus are compared in Table 18. It can be seen that the calculated 
temperatures are within 2 °C.  
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Table 18. Comparison between TASEF and Abaqus 

Time 
(min) 

Temperature (°C) Temperature Difference 
between TASEF and 

Abaqus (°C) 
Abaqus  TASEF 

Center Side Corner Center Side Corner Center Side Corner 
0 0 0 0 0 0 0 0 0 0 

30 18 743 815 18 744 815 0 1 0 
60 99 884 923 99 884 923 0 0 0 
90 190 958 985 189 958 985 -1 0 0 

120 300 1008 1028 299 1009 1028 -1 1 0 
150 411 1046 1062 409 1047 1062 -2 1 0 
180 512 1077 1089 510 1077 1089 -2 0 0 
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3.9 Case 9 – 2D Heat Transfer in a Composite Section with Temperature-Dependent 
Conductivity 

3.9.1 Problem Statement 

A hollow square metal tube (ߩ ൌ 7850	kg/mଷ, ܿ ൌ 600	J/ሺkg∙Kሻ, ε ൌ 0.8) is filled with an 
insulation material (݇ ൌ 0.05	W/ሺm∙Kሻ, ߩ ൌ 50	kg/mଷ, ܿ ൌ 1000	J/ሺkg∙Kሻ, ε ൌ 0). The 
thermal conductivity of the metal tube varies linearly with temperature such that its value is 
54.7 W/(m·K) at 0 °C, 27.3 W/(m·K) at 800 °C, and 27.3 W/(m·K) at 1200 °C. The tube walls 
are 0.5 mm thick, and the exterior width of the assembly is 0.201 m. The surrounding air 
temperature is 1000 °C, and the initial temperature of the assembly is 0 °C. Assuming that the 
heating is by convection and radiation, Eq. (4), and that the heat transfer coefficient is 
10 W/(m2·K), calculate the temperature at the center of the tube as a function of time and 
compare with the values given in Table 19. 

Table 19. Reference Values 

Time (min) Temperature (°C)
0 0 
30 341 
60 723 
90 886 

120 953 
150 981 
180 992 

3.9.2 Modeling Approach 

Case 9 was published in the verification report by Wickström and Pålsson (1999) and also 
appeared in the Annex of the German standard DIN EN 1991-1-1-2/NA. Because of slight 
differences between the two published solutions, the problem was modeled in Abaqus. The 
reference values that appear in Table 19 are taken from Wickström and Pålsson (1999), which 
were based on a 2D finite element analysis in TASEF that had converged with 2 °C accuracy.  

A 2D finite element model was generated in Abaqus using linear heat transfer elements. Due to 
the small thickness (i.e., 0.5 mm) of the metal tube in relation to the overall dimension of the 
assembly, a fine mesh of 0.00025 m was specified for the metal tube while the mesh over the 

insulation was varied from coarse (i.e., x = 0.01 m) to fine (i.e., x = 0.001 m). Compatibility 
between the finely meshed metal tube and coarsely meshed insulation was achieved by imposing 

a tie constraint at the interface between the metal tube and insulation. The time step t was 

calculated by Eq. (12) based on the element size x and thermal diffusivity  for the insulation 
material. The solution converged within 1°C for a mesh density of 0.001 m and time step of 1 s.  
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3.9.3 Comparison of Results 

The results from the German standard are compared to the TASEF and Abaqus models in Table 
20. It can be seen that the Abaqus and TASEF models compare well, with the temperature 
difference being within 2 °C. The difference is larger between the German standard and the 
TASEF and Abaqus models, particularly at 60 and 90 min.  

Table 20. Comparison between TASEF and Abaqus 

Time  
(min) 

Temperature (°C) Difference between 
Abaqus and TASEF (°C) DIN EN 1991-1-1-2 TASEF Abaqus 

0 0 0 0 0 
30 341 343 341 -2 
60 717 722 723 1 
90 882 885 886 1 

120 951 952 953 1 
150 979 980 981 1 
180 992 992 992 0 
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3.10 Case 10 – 2D Axisymmetric Heat Transfer with Non-Uniform Heat Flux 

3.10.1 Problem Statement 

A bar with circular cross section of diameter 20 cm and length 200 cm (݇ ൌ 50	W/ሺm∙Kሻ, 
ߩ ൌ 7850	kg/mଷ, ܿ ൌ 500	J/ሺkg∙Kሻ, ε ൌ 0.8) is heated uniformly over half of its length by an 
incident radiant heat flux of 30 kW/m2 with convection to ambient, Eq. (6). The remaining half 
of the bar’s length is cooled by convection and radiation to ambient. The surrounding air 
temperature over the entire length of the bar is 20 °C, and the initial temperature of the bar is 
20 °C. Assuming that the heat transfer coefficient is 10 W/(m2·K) and that the ends of the bar are 
perfectly insulated, calculate the temperature along the center of the bar at 60 min for the 
locations given in Table 21. 

Table 21. Reference Values 

Distance (cm) Temperature (°C) 
0 357 

25 357 
50 353 
75 325 

100 195 
125 59 
150 25 
175 20 
200 20 

3.10.2 Modeling Approach 

Case 10 was modeled in Abaqus using linear axisymmetric heat transfer elements. The solution 
was verified by finite element analysis in TASEF. 

The mesh density and time step in the Abaqus model were reduced until the solution converged. 
The time step t was selected for a given element size x by Eq. (12). The results of the 
convergence study are shown in Figure 6. The solution was found to converge within 0.2 °C for 
a mesh density of 0.005 m. 

 

  



26 
 

 

Figure 6. Convergence of the Abaqus model 

3.10.3 Comparison of Results 

The TASEF model was run with increasingly fine mesh until the solution converged. The 
TASEF results are compared to the Abaqus results in Table 22. It can be seen that the 
temperature difference is within 1 °C.  

Table 22. Comparison between TASEF and Abaqus 

x  
(cm) 

Temperature (°C) Difference between Abaqus 
and TASEF (°C) Abaqus TASEF 

0 357 357 0 
25 357 357 0 
50 353 353 0 
75 325 325 0 

100 195 195 0 
125 59 58 -1 
150 25 25 0 
175 20 21 1 
200 20 20 0 
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3.11 Case 11 – Lumped Mass with Moisture Evaporation 

3.11.1 Problem Statement 

A 1 cm by 1 cm square column (dry properties: ߩ ൌ 2400	kg/mଷ, ܿ ൌ 1000	J/ሺkg∙Kሻ, ε ൌ 0.8) 
is heated according to the ISO 834 time-temperature curve, Eq. (5). If the thermal conductivity of 
the material is relatively large, the temperature in the section, ܶ, can be taken as uniform. The 
column contains 2.08 % water by mass that evaporates at temperatures between 100 °C and 
120 °C. The density of water and specific heat capacity of water can be taken as 1000 kg/m3 and 
4187 J/(kg∙K), respectively. The latent heat of evaporation (2260 kJ/(kg of water)) is assumed to 
be in addition to the specific heat of the material. During evaporation, the amount of water is 
assumed to decrease linearly to zero. Assuming that ݄ ൌ 10	W/ሺmଶ∙Kሻ and that the initial 
temperature is 20 °C, calculate the temperature of the column as a function of time and compare 
to the values given in Table 23. 

Table 23. Reference Values 

Time (min)
Temperature 

(°C) 
0 20 
1 83 
2 112 
3 148 
4 192 
5 225 
6 249 
7 266 
8 278 
9 285 
10 291 
15 299 

3.11.2 Modeling Approach 

The problem was modeled in Abaqus using 2D linear heat transfer elements and verified by 
TASEF. Because Abaqus does not have a lumped mass model, a 2D finite element model was 
generated with linear heat transfer elements and uniform temperature was imposed throughout 
the model using a tie constraint.  

Temperature-dependent material properties were specified according to the problem statement. 
The effect of moisture on the density and specific heat was modeled in Abaqus using an effective 
specific heat ceff that was calculated from the enthalpy. In particular, the effective specific heat 
was calculated according to 

 ܿ ൌ
ܿߩ  ௪ܿ௪ߩ

ߩ
 (15)
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where c and cc are the density and specific heat of the dry cementitious material; w and cw are 

the density and specific heat of moisture, which vary in time due to evaporation; and eff is an 
effective density, which was taken as the dry density of the cementitious material. The latent heat 
of evaporation was specified as a material property with solidus and liquidus temperatures 
respectively given as the lower and upper temperatures for the moisture evaporation. Abaqus 
adds the latent heat effect to the specific heat capacity by default. TASEF allows the enthalpy to 
be specified directly as a temperature-dependent material property. Therefore, there is no need to 
define effective density and heat capacity to account for the presence of moisture. Although the 
material properties are defined differently in Abaqus and TASEF, the programs are expected to 
yield the same result because they are solving the same heat transfer equation for two materials 
that have equivalent thermal properties.  

A convergence study was performed, as shown in Figure 7. A time step of 1 s resulted in a 
solution that converged with 0.3 °C accuracy in the Abaqus model.  

 

Figure 7. Convergence study in Abaqus 

 

3.11.3 Comparison of Results 

The results from Abaqus and TASEF are compared in Table 28. It can be seen that the results are 
in good agreement, with temperature differences no greater than 1 °C.  
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Table 24. Comparison between TASEF and Abaqus 

Time 
min 

Temperature °C Temperature Difference 
between TASEF and 

Abaqus °C 
 

TASEF Abaqus 
0 20 20 0 
1 83 83 0 
2 112 112 0 
3 148 148 0 
4 192 192 0 
5 225 225 0 
6 249 250 -1 
7 266 266 0 
8 278 278 0 
9 285 286 -1 

10 291 291 0 
15 299 299 0 
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3.12 Case 12 – 1D Heat Transfer with Moisture Evaporation 

3.12.1 Problem Statement 

A 16 cm thick wall (dry properties: ߩ ൌ 500	kg/mଷ, ܿ ൌ 800	J/ሺkg∙Kሻ, ݇ ൌ 0.1	W/ሺm∙Kሻ, 
ε ൌ 0.8) is heated on both sides according to the ISO 834 time-temperature curve, Eq. (5). The 
water content of the wall is 10 % by mass, and the water is assumed to evaporate between 100 °C 
and 110 °C. The density of water and specific heat capacity of water can be taken as 1000 kg/m3 
and 4187 J/(kg∙K), respectively. The latent heat of evaporation (2260 kJ/(kg of water)) is 
assumed to be in addition to the specific heat of the material. During evaporation, the amount of 
water is assumed to decrease linearly to zero.  Assuming that ݄ ൌ 25	W/ሺmଶ∙Kሻ and that the 
initial temperature is 20 °C, calculate the temperature at various depths as a function of time and 
compare to the values given in Table 25. 

Table 25. Reference Values 

Time (min)
Temperature (°C) 

Surface 4 cm Center 
0 20 20 20 
15 717 24 20 
30 829 50 20 
45 893 83 24 
60 938 133 33 
75 972 206 46 
90 1001 268 62 

105 1024 323 80 
120 1045 371 94 

3.12.2 Modeling Approach 

A 1 cm segment of the wall was modeled in Abaqus using 2D linear heat transfer elements and 
verified by TASEF.  

Temperature-dependent material properties were specified according to the problem statement. 
The effect of moisture on the density and specific heat was modeled in Abaqus using an effective 
specific heat ceff that was calculated from the enthalpy according to Eq. (15). The latent heat of 
evaporation was specified as a material property with solidus and liquidus temperatures 
respectively given as the lower and upper temperatures for the moisture evaporation. Abaqus 
adds the latent heat effect to the specific heat capacity by default. TASEF allows the enthalpy to 
be specified directly as a temperature-dependent material property. Therefore, there is no need to 
define effective density and heat capacity to account for the presence of moisture.  

The mesh density and time step in the Abaqus model were reduced according to Eq. (12). It was 
found that the model converged within 0.3 °C for an element size of 0.0005 m and a time step of 
0.25 s.  
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3.12.3 Comparison of Results  

Results between TASEF and Abaqus are compared in Table 26. It can be seen that the Abaqus 
and TASEF solutions are within 1 °C.  

Table 26. Comparison between TASEF and Abaqus 

Time 
(min) 

Temperature (°C) Difference between 
Abaqus and TASEF (°C) TASEF Abaqus 

Surface 4 cm Center Surface 4 cm Center Surface 4 cm Center 
0 20 20 20 20 20 20 0 0 0 

15 717 24 20 717 24 20 0 0 0 
30 829 50 20 829 50 20 0 0 0 
45 893 83 24 893 83 24 0 0 0 
60 938 133 33 938 133 33 0 0 0 
75 972 206 46 972 206 46 0 0 0 
90 1001 268 63 1001 268 62 0 0 -1 

105 1024 323 80 1024 323 80 0 0 0 
120 1045 371 94 1045 371 94 0 0 0 
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3.13 Case 13 – 2D Heat Transfer with Moisture Evaporation 

3.13.1 Problem Statement 

A 0.2 m by 0.2 m square column (dry properties: ߩ ൌ 2400	kg/mଷ, ܿ ൌ 1000	J/ሺkg∙Kሻ, ε ൌ
0.8) is heated according to the ISO 834 time-temperature curve, Eq. (5). The thermal 
conductivity of the column material varies linearly with temperature such that its value is 
1.5 W/(m·K) at 0 °C, 0.7 W/(m·K) at 200 °C, and 0.5 W/(m·K) at 1000 °C. The column contains 
2.08 % water by mass that evaporates at temperatures between 100 °C and 120 °C. The density 
of water and specific heat capacity of water can be taken as 1000 kg/m3 and 4187 J/(kg∙K), 
respectively. The latent heat of evaporation (2260 kJ/(kg of water)) is assumed to be in addition 
to the specific heat of the material. During evaporation, the amount of water is assumed to 
decrease linearly to zero. Assuming that ݄ ൌ 10	W/ሺmଶ∙Kሻ and that the initial temperature is 
20 °C, calculate the temperature at the column center, corner and middle side surface as a 
function of time and compare to the values given in Table 27. 

Table 27. Reference Values 

Time (min)
Temperature (°C) 

Center Side Corner
0 20 20 20 
30 31 764 835 
60 85 904 943 
90 147 978 1005 

120 272 1028 1048 
150 393 1066 1082 
180 500 1097 1109 

3.13.2 Modeling Approach 

The problem was modeled in Abaqus using 2D linear heat transfer elements and verified by 
TASEF. Due to symmetry, a quarter of the section was modeled.  

Temperature-dependent material properties were specified according to the problem statement. 
The effect of moisture on the density and specific heat was modeled in Abaqus using an effective 
specific heat ceff that was calculated from the enthalpy according to Eq. (15). The latent heat of 
evaporation was specified as a material property with solidus and liquidus temperatures 
respectively given as the lower and upper temperatures for the moisture evaporation. Abaqus 
adds the latent heat effect to the specific heat capacity by default. TASEF allows the enthalpy to 
be specified directly as a temperature-dependent material property. Therefore, there is no need to 
define effective density and heat capacity to account for the presence of moisture.  

The mesh density and time step in the Abaqus model were reduced according to Eq. (12). It was 
found that the model converged to within 1.1 °C for an element size of 0.001 m and a time step 
of 2.4 s.  
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3.13.3 Comparison of Results 

The results from Abaqus and TASEF are compared in Table 28. It can be seen that the results are 
in good agreement, with temperature differences no greater than 1 °C.  

Table 28. Comparison between TASEF and Abaqus 

Time 
(min) 

Temperature (°C) Difference between 
TASEF and Abaqus (°C) TASEF Abaqus 

Center Side Corner Center Side Corner Center Side Corner 
0 20 20 20 20 20 20 0 0 0 

30 30 765 836 31 764 835 1 -1 -1 
60 85 904 943 85 904 943 0 0 0 
90 146 978 1005 147 978 1005 1 0 0 

120 272 1028 1048 272 1028 1048 0 0 0 
150 393 1066 1082 393 1066 1082 0 0 0 
180 500 1097 1109 500 1097 1109 0 0 0 
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3.14 Case 14 – 2D Heat Transfer in a Composite Section with Moisture Evaporation and 
Temperature-Dependent Conductivity 

3.14.1 Problem Statement 

A hollow metal square tube (ߩ ൌ 7850	kg/mଷ, ܿ ൌ 600	J/ሺkg∙Kሻ, ε ൌ 0.8) is filled with a 
cementitious material. The tube walls are 10 mm thick, and the exterior dimensions are 220 mm 
x 220 mm. The thermal conductivity of the tube is 54.7 W/(m·K) at 0 °C and decreases linearly 
to 27.3 W/(m·K) at 800 °C and remains at this same value for higher temperatures. The 
cementitious material (ߩ ൌ 2400	kg/mଷ, ܿ ൌ 1000	J/ሺkg∙Kሻ) contains 2.08 % water by mass 
that evaporates between 100 °C and 120 °C. The density of water and specific heat capacity of 
water can be taken as 1000 kg/m3 and 4187 J/(kg∙K), respectively. The latent heat of evaporation 
(2260 kJ/(kg of water)) is assumed to be in addition to the specific heat of the material. During 
evaporation, the amount of water is assumed to decrease linearly to zero. The thermal 
conductivity of the cementitious material varies linearly with temperature such that its value is 
1.5 W/(m·K) at 0 °C, 0.7 W/(m·K) at 200 °C, and 0.5 W/(m·K) at 1000 °C. The surrounding air 
temperature is 1000 °C, and the initial temperature of the column is 0 °C. Assuming that the heat 
transfer coefficient is 10 W/(m2·K), calculate the temperature at the center, side and corner of the 
concrete portion of the column as a function of time and compare with the values given in Table 
29. 

Table 29. Reference Values 

Time (min)
Temperature (°C) 

Center Side Corner
0 0 0 0 
30 19 951 981 
60 90 971 990 
90 177 979 994 

120 309 984 995 
150 426 988 996 
180 524 990 997 

 

3.14.2 Modeling Approach 

The problem was modeled in Abaqus using 2D linear heat transfer elements and verified by 
TASEF. Due to symmetry, a quarter of the section was modeled.  

Temperature-dependent material properties were specified according to the problem statement. 
The effect of moisture on the density and specific heat was modeled in Abaqus using an effective 
specific heat ceff that was calculated from the enthalpy according to Eq. (15). The latent heat of 
evaporation was specified as a material property with solidus and liquidus temperatures 
respectively given as the lower and upper temperatures for the moisture evaporation. Abaqus 
adds the latent heat effect to the specific heat capacity by default. TASEF allows the enthalpy to 
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be specified directly as a temperature-dependent material property. Therefore, there is no need to 
define effective density and heat capacity to account for the presence of moisture.  

A fine mesh was specified for the metal tube, while the mesh density and time step for the 
cementitious material were reduced according to Eq. (12) in the Abaqus model. It was found that 
the model converged to within 0.6 °C for an element size of 0.001 m and a time step of 2.4 s.  

3.14.3 Comparison of Results  

The results from Abaqus and TASEF are compared in Table 30. It can be seen that the results are 
in reasonable agreement, with errors no greater than 3 °C.  

Table 30. Comparison between TASEF and Abaqus 

Time 
(min) 

Temperature (°C) Difference between 
Abaqus and TASEF (°C) TASEF Abaqus 

Center Side Corner Center Side Corner Center Side Corner 
0 0 0 0 0 0 0 0 0 0 

30 20 952 981 19 951 981 -1 -1 0 
60 91 971 991 90 971 990 -1 0 -1 
90 175 979 994 177 979 994 2 0 0 

120 306 984 995 309 984 995 3 0 0 
150 423 988 996 426 988 996 3 0 0 
180 521 990 997 524 990 997 3 0 0 
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3.15 Case 15 – 2D Heat Transfer in a Composite Section with Cavity Radiation  

3.15.1 Problem Statement  

A metal I-beam (ߩ ൌ 7850	kg/mଷ, ܿ ൌ 600	J/ሺkg∙Kሻ, ε ൌ 0.8) is protected by a 1 cm thick 
insulation board (ߩ ൌ 870	kg/mଷ, ܿ ൌ 1130	J/ሺkg∙Kሻ, ε ൌ 0.8) as shown in Figure 8. The I-
beam fits within a square area 200 mm by 200 mm, its flanges are 15 mm thick, and its web is 
9 mm thick. There is a 10 mm air gap between the boards and the adjacent flanges. The thermal 
conductivity of the insulation board is 0.174 W/(m·K) at 0 °C and increases linearly to 
0.188 W/(m·K) at 250 °C and remains at this same value for higher temperatures. The thermal 
conductivity of the metal varies linearly with temperature such that its value is 54.0 W/(m·K) at 
20 °C, 27.3 W/(m·K) at 800 °C, and 27.3 W/(m·K) at 1200 °C. The fire is represented by the 
ISO 834 time-temperature curve, Eq. (5), with an initial temperature of 20 °C. The convection 
heat transfer coefficient to the exterior of the insulation board is 10 W/(m2·K), but it is assumed 
that there is no convective heat transfer at the interior surfaces of the boards or the I-beam. 
Calculate the temperature at the center of either flange as a function of time and compare to the 
values given in Table 31. 

Table 31. Reference Values 

Time (min) Temperature (°C)
0 20 
30 229 
60 519 
90 736 

120 879 

 

Figure 8 

 



37 
 

3.15.2 Modeling Approach 

Case 15 was originally published in the verification report by Wickström and Pålsson (1999). 
Wickström and Pålsson also presented the solution calculated by a 2D finite element analysis in 
TASEF that had converged with 2 °C accuracy. The problem was also modeled using the 
software HEATING 7.3 (Trelles et al., 2003). Because of slight differences between the two 
published solutions, the problem was modeled in Abaqus as well.  

In the Abaqus model, 2D linear heat transfer elements were used to model one quarter of the 
cross-section based on symmetry in the problem. Cavity radiation with reflection symmetry was 
employed in Abaqus using the default parameters for view factor calculations. Equation (12) was 
not used to simultaneously refine the mesh and time step due to the temperature-dependent 
thermal conductivity and the nonlinear radiation boundary conditions in the cavities. Instead, a 
fine mesh (i.e., four elements over the thickness of the insulation, flange, and web, respectively) 
was specified for the entire model and the time step was systematically reduced until the solution 
converged. The solution converged with 1 °C accuracy at a time step of 15 s. To ensure that the 
mesh was adequate for convergence, the analysis was repeated with a time step of 15 s and a 
finer mesh of eight elements over the thickness of the insulation, flange, and web, respectively. It 
was found that the temperature difference was less than 1 °C, demonstrating that the mesh of 
four elements over the thickness of the insulation, flange, and web was sufficient.  

3.15.3 Comparison of Results 

The temperature at the center of the flange is given in Table 32 for the analyses in TASEF, 
HEATING 7.3, and Abaqus. It can be seen that the three methods agree well, with temperature 
differences of no more than 4 °C (i.e., less than 2% error).  

Table 32. Comparison between TASEF, HEATING 7.3, and Abaqus 

Time  
(min) 

Temperature (°C) Difference between 
Abaqus and TASEF 

(°C) 

Difference between Abaqus 
and HEATING (°C) TASEF HEATING 7.3 Abaqus 

0 20 20 20 0 0 
30 226 230 229 3 -1 
60 518 521 519 1 -2 
90 736 738 736 0 -2 
120 879 880 879 0 -1 
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3.16 Case 16 – 3D Heat Transfer with Non-Uniform Heat Flux 

3.16.1 Problem Statement 

Consider a 1.0 m by 2.0 m rectangular metal plate (݇ ൌ 50	W/ሺm∙Kሻ, ߩ ൌ 7850	kg/mଷ, 
ܿ ൌ 500	J/ሺkg∙Kሻ, ε ൌ 0.8) that is 0.10 m thick.  In Cartesian coordinates ሺݔ,  ሻ, the corners ofݕ
the plate are (0,0), (1,0), (1,2), and (0,2).  A lower quarter of the plate front surface whose 
corners are (0,0), (0.5,0), (0.5,1), (0,1) is heated with an incident radiant heat flux of 30 kW/m2 
with reradiation to the surroundings and convection with surrounding air, Eq. (6).  The remainder 
of the front surface and the entire back surface have only reradiation to the surroundings and 
convection with the surrounding air.  The sides of the plate are insulated.  The surroundings and 
air temperature are both at 20oC, while the heat transfer coefficient at the plate surface is 
10 W/(m2·K). Calculate the temperature at the mid-depth along the height of the plate at 
ݔ ൌ 0.25	m and along the width of the plate at ݕ ൌ 0.5	m after a 60 minute exposure.  Compare 
the results with the values given in Table 33.  

Table 33. Reference Values 

x 
(m) 

y 
(m) 

z 
(m) 

Temperature (°C) 

0.25 0.00 0.05 183 
0.25 0.25 0.05 182 
0.25 0.50 0.05 181 
0.25 0.75 0.05 167 
0.25 1.00 0.05 102 
0.25 1.25 0.05 37 
0.25 1.50 0.05 22 
0.25 1.75 0.05 20 
0.25 2.00 0.05 20 

0.00 0.50 0.05 194 
0.25 0.50 0.05 181 
0.50 0.50 0.05 111 
0.75 0.50 0.05 39 
1.00 0.50 0.05 25 

3.16.2 Modeling Approach 

The problem was modeled in Abaqus using 3D linear heat transfer elements and verified by 
ANSYS (2011) and Autodesk Simulation Multiphysics (2012).  

The mesh density and time step in the Abaqus model were reduced until the solution converged. 

The time step t was selected for a given element size x by Eq. (12). The solution converged 
within 0.5 °C for a mesh density of 0.0125 m and time step of 12.5 s.  
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3.16.3 Comparison of Results 

The temperature is given in Table 32 for the analyses in Autodesk Simulation Multiphysics 
(ASM), ANSYS, and Abaqus. It can be seen that the three methods agree well, with temperature 
differences of no more than 0.5 °C.  

Table 34. Comparison between Autodesk Simulation Multiphysics, ANSYS, and Abaqus 

x (m) y (m) z (m) 
Temperature (oC) Difference between 

Abaqus and ASM 
(°C) 

Difference between 
Abaqus and ANSYS 

(°C) 
ASM  ANSYS Abaqus  

0.25 0.0 0.05 182.4 182.2 182.6 0.2 0.4 
0.25 0.25 0.05 182.3 182.0 182.5 0.2 0.5 
0.25 0.50 0.05 180.4 180.1 180.6 0.2 0.5 
0.25 0.75 0.05 166.8 166.5 166.9 0.1 0.4 
0.25 1.0 0.05 102.3 102.2 102.3 0.0 0.2 
0.25 1.25 0.05 36.7 36.7 36.7 0.0 0.0 
0.25 1.50 0.05 22.2 22.3 22.2 0.0 -0.1 
0.25 1.75 0.05 20.2 20.2 20.2 0.0 0.0 
0.25 2.0 0.05 20.0 20.0 20.0 0.0 0.0 
0.0 0.50 0.05 193.7 193.4 193.9 0.2 0.5 

0.25 0.50 0.05 180.4 180.1 180.6 0.2 0.5 
0.5 0.50 0.05 110.6 110.4 110.6 0.0 0.2 

0.75 0.50 0.05 39.4 39.4 39.4 0.0 0.0 
1.0 0.50 0.05 25.3 25.4 25.2 -0.1 -0.3 
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